www.pwc.com

Renewable Energy Brazil April 2013

Summary

- 1. Brazilian Renewable Energy Overview
- 2. Wind energy
- 3. Biomass
- 4. Small Hydro
- 5. The organized contract auctions for renewable energy
- 6. Why to Invest on Renewable Energy in Brazil

Energy Supply Structure

- Brazil has one of the cleanest energy matrices in the world, 47% of the overall energy production comes from renewable sources
 - ✓ The worldwide average is about 19%

Source: BEN 2010

• **Over 80% of the electricity generation installed capacity** in the country (121,823 MW) comes from renewable sources

- 85% of the renewable electricity generation capacity comes from hydro sources:
 - ✓ Large plants in cascade over different basins
 - ✓ Large reservoirs
- During the last five years three other renewable resources have become competitive for large-scale generation expansion:
 - ✓ Wind power
 - ✓ Small hydro

✓ Biomass

 In 2011 the other renewable sources installed capacity totalizes 13,700 MW and by the end of 2013 is estimated an increasing of 5,900 MW, currently under construction

- Brazil's hydro reservoirs and the countrywide transmission grid provides flexibility to modulate seasonal and intermittent generation
- Complementarity generation with hydro:
 - ✓ Hydro and wind (in the Northeast region of the country)
 - ✓ Hydro and bioelectricity (in the Southeast region of the country)

Complementarity of Biomass and Wind Energy with Hydro

	2002	2011	CAGR
Oil	74,927	108,976	4.3%
Natural Gas	15,416	23,888	5.0%
Hydro	24,604	36,837	4.6%
Firewood	23,645	26,322	1.2%
Sugar Cane	25,279	43,270	6.2%
Others	5,055	11,200	9.2%
Total (thousands TOE)	168,926	250,492	4.5%

Renewable Energy Brazil PwC

Source: BEN 2011, Chapter 1 Energy Analysis and Aggregated data

Electricity Generation Installed Capacity (MW)

Source: BEN 2011, Chapter 2 - Energy Supply and Consumption by Source

64,473 13,813		82,459 31,243	2.8% 9.5%
13,813		31,243	9.5%
~ ~ ~ -			
2,007		2,007	0.0%
22		1,426	59.0%
80.315		117,135	4.3%
	80,315	80,315	80,315 117,135

Renewable Energy Brazil PwC

Source: BEN 2011, Chapter 2 - Energy Supply and Consumption by Source

April 2013 8

Renewable Energy on the Brazilian Energetic Matrix

In 2012

In 2021

Energetic Matrix 2021 Renewable Energy by type of source

Source: PDE 2012 - Results

Source: PDE 2012 - Results

	Authorize	ed and				
	Contracted Plants		Planned plants		Total	
Source	Billion US\$	%	Billion US\$	%	Billion US\$	%
Hydro	20.5	34.8%	33.7	56.7%	54.1	45.8%
Small Hydro-Biomass-Wind	16.7	28.4%	24.4	41.1%	41.1	34.8%
Thermal	10.8	18.4%	0.7	1.1%	11.5	9.7%
Nuclear	3.1	5.3%	-	0.0%	3.1	2.6%
Natural Gas	1.5	2.6%	0.7	1.1%	2.2	1.8%
Coal	1.2	2.0%	-	0.0%	1.2	1.0%
Oil/diesel	5.0	8.5%	-	0.0%	5.0	4.2%
Total	58.7	100.0%	59.4	100.0%	118.1	100.0%

Source: PDE 2011

- This ten years plan (2012-2021) requires an investment of approximately US\$ 118.1 billions, of which US\$ 58.7 billions have already been assigned through energy auctions.
- Within this plan, the remaining US\$ 59.4 billion are to be invested throughout the next ten years on Hydro, Small Hydro, Biomass and Wind energy plants.

Source: ANEEL

	Operation	Construction	Total
Hydro	77,742	8,053	85,795
Thermal	30,581	4,892	35,473
Small Hydro	3,857	729	4,586
Nuclear	2,007	1,350	3,357
Wind power	1,114	813	1,927
Total (MWh)	115,301	15,837	131,138
Source: ANEEL			

Renewable Energy Brazil PwC

April 2013 11

- Currently 59 wind farms are in operation, mostly concentrated in the Northeast and South regions;
- The milestone of 1,000 MW was achieved in June 2011;
- In 2021 the installed wind capacity in Brazil should be on order of 15,500 MW (8.5% of the total energy, compared to 1.2% current).
 - \checkmark Other countries in Europe uses around 10%;

Source: Moody's, National Agency of Electricity (ANEEL), Globo Natureza, GWEC.

Participation of wind energy installed capacity of power generation in Brazil

Source: PNE 2011, Chapter III – Electricity generation

BNDES (National Development Bank of Brazil), has signed or is in the process of signing around 51 contracts of direct and indirect funding, totaling US\$ 2 billion for the deployment of 1,369 MW. Another 44 operations are in analysis, with applications for funding of around US\$ 1.7 billion

	Electricity generation Installed Capacity		Main generating	Wind ge Installed	nerating Capacity	
Country (MW)	2008	2020	source in 2008	2008	2020	CAGR
Brazil*	102,949	173,645	85% hydro	398	14,113	34.6%
Russia	224,240	235,000	68% thermal	17	7,000	65.2%
India	177,376	290,000	80% thermal	10,243	16,000	3.8%
China	797,078	1,313,000	77% thermal	12,170	99,000	19.1%
World	4,624,767	5,796,000	82% hydro	121,000	398,000	10.4%

Source: BEN 2011 - Energy Supply and Consumption by Source

U.S. Energy Information Administration (EIA), International Energy Statistics database

(*) PDE 2011

Source: World Energy Council

- Wobben Enercon (Germany) -> São Paulo
- Alstom (France) -> Bahia
- Gamesa (Spain) -> Bahia
- GE (USA) -> São Paulo e Bahia
- Impsa (Argentina) -> Pernambuco e Bahia
- Vestas (DM) -> Ceará
- MTOI -> Santa Catarina
- 3 coming from China _

Sinovel Gouldian Goldwin

Source: União da Indústria de Cana de açucar (UNICA)

- Sugarcane production is concentrated on Center-South and Northeast regions of Brazil.
- U.S. Environmental Protection Agency (EPA) classified Brazilian sugarcane ethanol as capable of reducing greenhouse gas (GHG) emissions by at least 50% compared to gasoline;
- Processed Residues from sugarcane (bagasse and straw) are alternatives for generating electricity.
- **Bioelectricity** supplied to the national grid could increases from 5% in 2012 to **up of 18%** of the Brazilian **energy grid by 2021**,

- Increasing the **annual reduction in emissions** generated by the use of ethanol and bioelectricity in Brazil **from 46 million tons of CO2** equivalent reached **in 2011, up to 112 million tons by 2020**.
- Biomass is an strong option to deal with the unpredictable behavior of rainy periods along the year:
 - ✓ In March 2013, at the end of the rainy period the hydro power plants located on Southeast and Middle West reservoirs (70% of Brazilian water reservoirs) were operating at 49.9% of its capacity.
 - ✓ In comparison to the previous three years, when the reservoirs operated at 82.9% (2010), 83% (2011) and 78.5% (2012).
 - ✓ In March 2013 the Northeast region the reservoirs were operating with 42% of its capacity. In March 2012 was 82%;

Sugar cane total demand projection (Million of Ton)

Source: BEN 2012 - Energy Supply and Consumption by Source

	2012	2021	CAGR
Sugar cane for etanol	299	781	11.3%
Sugar cane for sugar	287	374	3.0%
Total Sugar cane (Million of ton)	586	1,155	7.8%

Small Hydro

- The Small Hydro classification is related with the following characteristics:
 - Location: Installed on reservoirs that does not permit the water flow regularization,
 - Generation installed capacity
 - ✓ Beyond 1 MW
 - ✓ 1.1 MW to 30 MW,
 - ✓ Above 30 MW

Small Hydro

	Hydro Resource generation Potential (MW)					
River Basin	Amazon	Araguaia	Others	Total		
Exploited potential 2011	835	12,198	64,744	77,777		
Potential expansion until 2015	12,153	2,428	5,563	20,144		
Potential expansion 2015-2020	16,943	1,600	5,000	23,543		
Potential expansion 2020-2030	44,200	3,200	5,000	52,400		
Total (MW)	74,131	19,426	80,307	173,864		

Note:

1. Exploited potential includes plants in operation, under construction and commissioned

2. Excludes Itaipu's exceed production imported by the Brazil

3. Figures indicate only 50% of binational power plants

4. The generating potential of small hydro plants is not taken into account.

Source: PNE 2030 - Hydro generation

	Small Hydro Plants generation Potential (MW)					
Plant potential	North	North-east	Central-west	South-east	South	Brazil
Known potential ¹	773	706	2,808	3,275	2,899	10,461
Theorical potential	4,763	155	3,911	3,625	3,000	15,454
Total (MW)	5,536	861	6,719	6,900	5,899	25,915

Source: CERPCH

(¹) does not includes plants in operation

- Contract auctions are integrated into the regulatory framework since 2004
- Regular auctions offer mid- and long-term contracts ahead of delivery, in an exclusive "investment market" for new capacity
- Original motivation was price disclosure and efficiency in the procurement process (reduction of asymmetric information)

- 62,000 MW of new capacity contracted since 2005 for future delivery
 - ✓ 25 auctions for new capacity, including 8 renewable energy auctions
 - ✓ 443 new generation projects from all types of technologies
 - Gas, renewable, conventional & large hydros, etc
 - $\checkmark\,$ 60% renewable in total (40% is conventional hydro & 20% other renewable)
 - ✓ Average price: ~70 US\$/MW
 - ✓ US\$ 300 billion in contracts

- Regular (yearly) auctions exclusive for new energy
 - ✓ Volumes to contract (regulated consumers pay) and centralized procurement (economies of scale) is organized by the government
 - ✓ Standardized long-term energy contracts offered, backed by firm energy
 - ✓ Technology-neutral but the government can interfere in the candidate projects with policy decisions:
 - ✓ has been used to organize project-specific auctions (e.g. large hydros), to avoid oil- and coal-fired generation as candidate supply and to contract renewable

Source: EPE

Source: CCEE

(*)Proinfa was the first RES support mechanism in the country, based on feed-in rate (administrativily set)

Why to Invest on Renewable Energy in Brazil

- Vast energy potential
- Renewables sharing 45% of energy matrix
- Consumption average annual growth of 5,3%
- 6,000 MW of new generating capacity per year until 2020
- Large experience in engineering, construction and operation of power systems
- Major producer of sugar cane, alongside with India
- Major biofuels producer
- Largest exporter and second largest producer of ethanol
- Large areas available for agricultural expansion

Thank you

André Castello Branco Partner – Rio de Janeiro Corporate Finance & Recovery - M&A and Valuation (55) 21 3232 6261(office) andre.castello@br.pwc.com